Low Carbon Emission Shrimp Farming Development Model
Abstract
Shrimp is a vastly strategic aquaculture commodity in Indonesia, most of which is produced for the export market; hence, competitiveness is the main key in the industry. With the increasing productivity of a shrimp farming area, the regulation for establishing a shrimp culture area needs to be strictly managed, including reducing carbon emissions. The management of aquaculture areas needs to pay attention to the principle of sustainability and consider carbon dynamics. This paper contains a descriptive analysis of the literature related to the substance of the study. The carbon dynamics in aquaculture areas consist of potential sources of carbon emitted and potential sinks or carbon that can be absorbed and stored. By structuring the shrimp pond area, aquaculture engineering, the application of good aquaculture practices and use of alternative energy sources, during the shrimp farming process in ponds, the carbon emission can be minimized, and the carbon sink can be increased. Our recommendation suggests that analysis of land suitability, environmental carrying capacity and carbon dynamics in each shrimp pond area are exceptionally required to be conducted to assess land suitability as a low carbon emission shrimp farming area. Furthermore, to increase farmers' understanding and awareness of the sustainability of the practices, pilot areas for low-emission shrimp ponds need to be developed.
Views: 6663
Downloads
References
Ahmed N, Cheung WWL, Thompson S, Glaser M. (2017). Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation, and climate change in coastal Bangladesh. Mar Policy 82: 68-75. DOI: 10.1016/j.marpol.2017.05.007.
Ahmed N, Thompson, Glaser M. (2019). Environmental Sustainability, and Climate Change Adaptability. Environmental Management 63(2): 159-172. Doi 10.1007/s00267-018-1117-3
Al Hasibi RA, Hadi SP, Widiastuti AN. (2013). Analisis Skenario Permintaan dan Penyediaan Energi Listrik pada Sistem Interkoneksi Jawa-Madura-Bali 2050. JNTETI 2 (4): 74-84. [in Indonesia].
Alongi DM. (2018). Blue Carbon: coastal sequestration for climate change mitigation. Cham: Springer. pp 96. doi: 10.1007/978-3-319-91698-9.
Alongi DM, Murdiyarso D, Fourqurean JW, Kauffman JB, Hutahaean A, Crooks S, Lovelock CE, Howard J, Herr D, Fortes M, Pidgeon E, Wagey T. (2015). Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetland Ecological Management. 213:266– 272. doi: 10.1007/s11273-015-9446-y.
Arifianti VB. (2020). Mangrove management and climate change: a review in Indonesia. IOP Conf. Series: Earth and Environmental Science 487 (2020) 012022. doi: 10.1088/1755-1315/487/1/012022.
Arifianti VB, Novita N, Subarno, Tosiani A. (2021). Mangrove deforestation and CO2 emissions in Indonesia. OP Conf. Series: Earth and Environmental Science 874 (2021) 012006. doi: 10.1088/1755-1315/874/1/012006.
Brugere C, Manjarrez JA, Beverigde MCM, Soto D. (2019). The ecosystem approach to aquaculture 10 years on – a critical review and consideration of its future role in blue growth. Review in Aquaculture 11: 493-514. doi: 10.1111/raq.12242.
[BPS] Badan Pusat Stastik Kabupaten Karawang. (2019) Statistics of Karawang District 2019. Badan Pusat Statistik Kabupaten Karawang. 35 pp.
Chen G, Chen B, Yu D, Tam NFY, Ye Y, Chen S. (2016). Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environmental Research Letter 11:1–10. doi:doi:10.1088/1748-9326/11/12/124019.
Dahuri R, Rais J, Ginting SP, Sitepu MJ. (1996). Pengelolaan Sumber Daya Wilayah Pesisir dan Lautan secara Terpadu. PT. Pradnya Paramita (ID). Jakarta. pp 305. [in Indonesian].
Dariah A, Susanti E, Agus F. (2011). Simpanan karbon dan emisi CO2 pada lahan gambut. Bogor: Balai Penelitian Tanah – Kementerian Pertanian). [in Indonesia].
Dewata A P. (2013) Analysis of the potential of greenhouse gases (CH4 and CO2) in intensive shrimp farming and public perception in its management in Tulang Bawang Regency, Lampung Province. Master Thesis, Bogor Agricultural University, 68 pp.
Dinas Perikanan. (2018). Statistik Perikanan Budidaya Kabupaten Karawang. Pemerintah Kabupaten Karawang.
Farkan M. (2016). Model Pengelolaan Kawasan Budidaya Udang Berkelanjutan di Pesisir Teluk Banten. [disertasi]. Bogor (ID):Institut Pertanian Bogor. [in Indonesia].
[FAO] Food and Agriculture Organization. (2020). The State of World Fisheries and Aquaculture: Sustainability in action. Rome. Doi 10.4060/ca9229en
Hall SJ, Delaporte A, Phillips MJ, Beveridge M, O’Keefe M. (2011). Blue Frontiers: managing the environmental costs of aquaculture. The WorldFish Center, Penang, Malaysia.
Hambrey J. (2017). The 2030 Agenda and the SDGs: the challenge for aquaculture development and management. FAO Fisheries and Aquaculture Circular No. 1141. FAO, Rome.
Heriyanto N M and Subiandono E. (2012). Komposisi dan struktur tegakan, biomasa, dan potensi kandungan karbon hutan mangrove di Taman Nasional Alas Purwo/Composition and structure, biomass, and potential of carbon content in mangrove forest at National Park Alas Purwo Jurnal Penelitian Hutan dan Konservasi Alam 9(1) 023–032. [in Indonesia].
Hilmi E, Parengrengi, Vikaliana R, Kusmana C, Iskandar, Sari LK, Setijanto. (2017). The carbon conservation of mangrove ecosystem applied REDD program. Regional Studies Marine Science, 16:152–161. doi:10.1016/j.rsma.2017.08.005.
[IPCC] Intergovermental Panel for Climate Change. (2001). Climate Change 2001: The Scientific Basis. United Kingdom and New York, NY, USA.
Fawzi NI, Husna VN. (2021). Aquaculture Development Monitoring on Mangrove Forest in Mahakam Delta, East Kalimantan. IOP Conf. Series: Earth and Environmental Science 750 012002: 1-9. doi:10.1088/1755-1315/750/1/012002.
Kauffman JB, Heider C, Norflok J, Payton F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic Ecological Society of America Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Aplication 24:518–527. doi:10.1890/13-0640.1.
Kauffman JB, Arianto VB, Trejo HH, Garcia MCJ, Norflok J, Cifuentes M, Hadriyanto D, Murdiyarso D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontier Ecological Environment. doi:10.1002/fee.1482
Kauffman JB, Heider C, Norflok J, Payton F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecology Aplication. 24:518–527. doi:10.1890/13-0640.1
Komarudin RA. (2013). Model perubahan penggunaan lahan pesisir untuk mendukung rencana tata ruang wilayah Kabupaten Karawang. Tesis magister. Bogor (ID): Institut Pertanian Bogor. [in Indonesia].
Laurion I, Vincent W F, MacIntyre S, Retamal L, Dupont C, Francus P, Pienitz R. (2010). Variability in greenhouse gas emissions from permafrost thaw ponds. Limnology and Oceanography 55(1):115-133.
Liu H, Ren H, Hui D, Wang W, Liao B, Cao Q. (2014). Carbon stocks and potential carbon storage in the mangrove forests of China. Journal Environmental Management 133:86–93. doi:10.1016/j.jenvman.2013.11.037.
Mereci-Guaman J, Casanoves F, Delgado-Rodriguez D, Ochoa P, Cifuentes-Jara M. (2021). Impact of Shrimp Ponds on Mangrove Blue Carbon Stocks in Ecuador. Forest 12 (816): 1-14. Doi:10.3390/f12070816.
Mitra A, Zaman S. (2015). Blue carbon reservoir of the Blue Planet. New Delhi: Springer, 306 pp.
Moffit CM, Cano LC. (2014). Blue Growth: The 2014 FAO State of World Fisheries and Aquaculture, Fisheries 39 (11): 552-553. doi: 10.1080/03632415.2014.966265.
Murdiyarso D, Purbopuspito J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S, Kurnianto S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change. doi: 10.1038/NCLIMATE2734
Queiroz H M, Artur A G, Taniguchi C A K, Silveira M R S da, Nascimento J C do, Nóbrega G N, Otero X L, Ferreira T O. (2019) Hidden contribution of shrimp farming effluents to greenhouse gas emissions from mangrove soils. Estuarine, Coastal and Shelf Science 221:8-14.
Rachmawati D, Setyobudiandi I, Hilmi E. (2014). Potensi Estimasi Karbon Tersimpan Pada Vegetasi Mangrove Di Wilayah Pesisir Muara Gembong Kabupaten Bekasi. Omni-Akuatika XIII (19): 85–91. [in Indonesia].
Rahman, Effendi H, Rusmana I. (2017). Estimasi Stok dan Serapan karbon pada Mangrove di Sungai Tallo, Makassar. Jurnal Ilmu Kehutan II:19–28. doi:10.1111/gcb.13051. [in Indonesia].
Reeder BC. (2017). Primary productivity limitations in relatively low alkalinity, high phosphorus, oligotrophic Kentucky reservoirs. Ecol Eng 108: 477-481. DOI: 10.1016/j.ecoleng.2017.06.009.
Rifqi M, Widigdo B, Wardiatno Y, Mashar A, Adianto W. (2020a). The daily variance of CO2 and CH4 emission from shrimp ponds. IOP Conference Series: Earth Environmental Science 420 012026: 1-9. doi:10.1088/1755-1315/420/1/012026.
Rifqi M, Widigdo B, Wardiatno Y, Mashar A, Adianto W. (2020b). CO2 and CH4 flux from the water-air interface of three shrimp culture technologies. AACL Bioflux 13 (2): 605-617.
Rifqi M, Widigdo B, Mashar A, Nazar F, Wardiatno Y. (2020c). Strategy to gain the target of shrimp production in Karawang District coastal area. AACL Bioflux 13 (5): 1-9.
Rifqi M. (2020). Dinamika blue carbon pada budidaya udang sebagai unsur penentu penataan areal pertambakan di wilayah pesisir. Disertasi. IPB University. [in Indonesia].
Rifqi M, Widigdo B, Mashar A, Nazar F, Prihutomo A, Wardiatno Y. (2022). Gaining Aquaculture Blue Growth with Low Carbon Emission Shrimp Farming Technology. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 12 (2): 2757-2769.
Paez-Osuna F. (2001). The Environmental Impact of Shrimp Aquaculture: Causes, Effects, and Mitigating Alternatives. Enviromental Management 28(1): 131-140. Doi 10.1007/s002670010212.
Perez A, Machado W, Gutierrez D, Saldarriaga M S, Sanders C J. (2020). Shrimp farming influence on carbon and nutrient accumulation within Peruvian mangroves sediments. Estuarine, Coastal and Shelf Science 243 106879. doi.org/10.1016/j.ecss.2020.106879.
Prasita VD. (2007). Analisis Daya Dukung Lingkungan dan Optimalisasi Pemanfaatan Wilayah Pesisir untuk Pertambakan di Kabupaten Gresik [disertasi]. Bogor (ID):Institut Pertanian Bogor.
Prasita VD, Widigdo B, Hardjowigeno S, Budiharsono S. (2008). Kajian daya dukung lingkungan kawasan pertambakan di Pantura Kabupaten Gresik Jawa Timur. Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, 15(2): 95-102. [in Indonesia].
Purnawan HW, Thayib H, Abdini C. (2019). Analisis scenario kemitraan kehutanan antara Gapoktan Riding Bersatu dan PT. Bumi Mekar Hijau (Suatu Kasus di Desa Riding Kecamatan Lampam, Kabupaten Ogan Komering Ilir, Provinsi Sumatera Selatan. JISPOL 9(1): 171-187. [in Indonesia].
Segers R. (1998). Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23-51.
Setyanto P. (2008). Teknologi mengurangi Emisi Gas Rumah Kaca dari lahan sawah (Technologi to reduce GHG emissions from rice field). Iptek Tanam. Pangan 3 No. 2: 205–214. [in Indonesia].
Sidik F, Lovelock C E. (2013). CO2 efflux from shrimp ponds in Indonesia. PLoS ONE 8(6):e66329.
Siikamäki J, Sanchirico JN, Jardine S, McLaughlin D, Morris D. (2013). Blue Carbon: Coastal Ecosystems, Their Carbon Storage, and Potential for Reducing Emissions. Environment: Science and Policy for Sustainable Development 55:14–29. doi:10.1080/00139157.2013.843981.
Soares DCE, Henry-Silva GG. (2019). Emission and absorption of greenhouse gases generated from marine shrimp production (Litopeneaus vannamei) in high salinity. J. Clean. Prod. 218: 367–376. doi:10.1016/j.jclepro.2019.02.002.
Sondak CFA. (20150. Estimasi potensi penyerapan karbon biru (blue carbon) oleh hutan mangrove Sulawesi Utara/Potential estimation of blue carbon sequestration by mangrove forests in North Sulawesi Journal of Asean Studies on Maritime Issues 1(1) 24–29. [in Indonesia].
Sugiyono. (2008). Qualitative quantitative research methods and R&D (edisi pertama). Alfabeta. Bandung. [in Indonesia].
Tong C, Bastviken D, Tang KW, Yang P, Yang H, Zhang Y, Guo Q, Lai DYF. (2021). Annual CO2 and CH4 fluxes in coastal erathen ponds with Litopenaeus vannamei in southeastern China. Aquaculture 545 (737229): 1 – 10. doi 10.1016/j.aquaculture.2021.737229.
Ullman R, Bilbao-Bastida V, Grimsditch G. (2013). Including blue carbon in climate market mechanisms. Ocean Coastal Management, 83:15–18. doi:10.1016/j.ocecoaman.2012.02.009.
Vallina SM, Cermeno P, Dutkiewicz S, Loreau M, Montoya JM. (2017). Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol Modell 361: 184-196. DOI: 10.1016/j.ecolmodel.2017.06.020.
Vasanth M, Muralidhar M, Saraswathy R, Nagavel A, Dayal JS, Jayanthi M, Lalitha N, Kumararaja P, Vijayan K K. (2016). Methodological approach for the collection and simultaneous estimation of greenhouse gases emission from aquaculture ponds. Environ. Monit. Assess. 188. doi:10.1007/s10661-016-5646-z.
Widigdo B, Rifqi M, Mashar A, Nazar F, Wardiatno Y. (2020). The contribution of phytoplankton in the carbon adsorption and stock during shrimp culture in brackishwater ponds. Biodiversitas 21(11): 5170-5177. doi 10.13057/biodiv/d211123.
Xuan BB, Sandorf ED, Ngoc QTK. (2021). Stakeholder perceptions towards sustainable shrimp aquaculture in Vietnam. Journal of Environmental Management 290(112585): 1-9 Doi 10.1016/j.jenvman.2021.112585.
Yang P, Bastviken D, Lai DYF, Jin BS, Mou XJ, Tong C, Yao YC. (2017). Effect of coastal marsh convertion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuarine, Coastal and Shelf Science. doi 10.1016/j.ecss.2017.09.023.
Yang P, Lai DYF, Huang JF, Tong C. (2017b). Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China. J. Environ. Sci. (China) 65: 72–82. doi:10.1016/j.jes.2017.03.024.
Yang P, Lai DYF, Yang H, Tong C, Lebel L, Huang J, Xu J. (2019a). Methane dynamics of aquaculture shrimp ponds in two Subtropical Estuaries, Southeast China: Dissolved Concentration, Net Sediment Release, and Water Oxidation. J. Geophys. Res. Biogeosciences 4: 1430–1445. doi:10.1029/2018JG004794.
Yogev U, Atari A, Gross A. (2018). Nitrous oxide emissions from near-zero water exchange brackish recirculating aquaculture systems. Science of the Total Enviroment 628-629: 603 – 610. doi 10.1016/j.scitotenv.2018.02.089.
-
24
-
15
-
14
-
14
-
14
-
12
-
10
-
10
-
9
-
9