Rate of Land Use Conversion to Mining and Implications for Carbon Stocks
Abstract
Global warming, driven by escalating atmospheric carbon dioxide CO₂ concentrations, represents a critical threat to global climate stability and exacerbates extreme weather events. Indonesia, particularly East Kalimantan and its capital, Samarinda City, serves as a significant contributor to these emissions due to intensive land-use and land-cover changes (LULCC), primarily characterized by deforestation and the rapid expansion of coal mining. The primary objective of this study is to explicitly quantify the rate of land-use conversion and evaluate its direct implications for terrestrial carbon stocks in Samarinda City over a decadal period from 2014 to 2024. To achieve this, the research utilizes high-resolution Landsat 8 OLI/TIRS satellite imagery processed through Geographic Information Systems (GIS) and Google Earth Engine for temporal change detection. Carbon stocks were quantified using the ICLEI carbon calculator by integrating spatial transition data with biomass-based carbon indices. Key findings reveal a substantial decline in the city's total carbon stock, falling from 1,630,212.52 tons in 2014 to 1,442,812.07 tons in 2024. This depletion is fundamentally linked to a 65.22% expansion of mining areas. The results underscore the urgent need for integrating strategic zoning within the Regional Spatial Plan (RTRW) and adopting advanced carbon mineralization technologies to mitigate further carbon stock loss.
Views: 100
Downloads
References
Aydogdu, K., Duzgun, S., & Yaylaci, E. D. (2024). A Systems Engineering Approach to Decarbonizing Mining : Analyzing Electrification and CO 2 Emission Reduction Scenarios for Copper Mining Haulage Systems.
Brasika, I. B. M., Friedlingstein, P., Sitch, S., O’Sullivan, M., Duran-Rojas, M. C., Rosan, T. M., … Hurtt, G. C. (2024). Uncertainties in Carbon Emissions From Land Use and Land Cover Change in Indonesia. https://doi.org/10.5194/egusphere-2024-3165
Chang, X., Xing, Y., Wang, J., Yang, H., & Gong, W. (2022). Resources , Conservation & Recycling Effects of Land Use and Cover Change ( LUCC ) on Terrestrial Carbon Stocks in China Between 2000 and 2018. Resources, Conservation & Recycling, 182(March), 106333. https://doi.org/10.1016/j.resconrec.2022.106333
Goh, C. S., & Lee, S. H. J. T. (2021). Transforming Exploitative Land-Based Economy to Reduce Terrestrial Carbon Stock Loss: The Case of Kalimantan, Indonesia. Springer International Publishing, 229–245. https://doi.org/10.1007/978-3-030-55536-8_11
Kartikasari, R., Rachmansyah, A., & Leksono, A. S. (2019). Impact of Coal Mining in Forest Area to Carbon Emission in Kutai Kartanegara, East Kalimantan. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 9(4), 1066–1074. https://doi.org/10.29244/jpsl.9.4.1066-1074
Li, B., Li, P., Yang, X., Xiao, H., Xu, M., & Liu, G. (2021). Land‐use conversion changes deep soil organic carbon stock in the Chinese Loess Plateau. Land Degradation & Development, 32(1), 505–517. https://doi.org/10.1002/ldr.3644
Liu, X., Yan, Y., Liu, W., & Huang, Z. (2022). System Construction and the Function Improvement of Ecological Carbon Sink in Coal Mining Areas Under the Carbon Neutral Strategy. https://doi.org/10.13227/j.hjkx.202108170
Machado, J. M., Johnson, J. C., Tornquist, C. G., Taborda, E. P., & Winck, B. R. (2024). Soil carbon stocks as affected by land-use changes across the Pampa of southern Brazil. Revista Brasileira de Ciencia Do Solo, 48, 1–15. https://doi.org/10.36783/18069657rbcs20230124
Maus, V., Giljum, S., da Silva, D. M., Gutschlhofer, J., da Rosa, R. P., Luckeneder, S., … McCallum, I. (2022). An update on global mining land use. Scientific Data, 9(1), 1–11. https://doi.org/10.1038/s41597-022-01547-4
Onifade, M., Zvarivadza, T., Adebisi, J. A., Said, K. O., Dayo-Olupona, O., Lawal, A. I., & Khandelwal, M. (2024). Advancing toward sustainability: The emergence of green mining technologies and practices. Green and Smart Mining Engineering, 1(2), 157–174. https://doi.org/10.1016/j.gsme.2024.05.005
Palaniyandi, M., & Mahato, D. (2024). Spatial and Temporal Analysis of Land Use / Land Covers Changes Using Remote Sensing and GIS: A Case Study from Bijoy River Basin, Tripura, India. Journal of Geography, Environment and Earth Science International, 28(9), 152–165. https://doi.org/10.9734/jgeesi/2024/v28i9818
Pandey, A., & Bhaduri, G. A. (2023). Intensification of aqueous mineralisation of CO2 with CaO containing industrial wastes in a modified airlift reactor. Chemical Engineering Research and Design, 200(October), 303–311. https://doi.org/10.1016/j.cherd.2023.10.040
Purwanto, A., & Sulha. (2024). Carbon Stocks Estimation Using the Stock Difference Method of Various Land Use Systems Based on Geospatial in Kualan Watershed. Jurnal Penelitian Pendidikan IPA, 10(11), 8602–8611. https://doi.org/10.29303/jppipa.v10i11.6818
Qi, J., Wang, Z., Cressey, E. L., Liang, B., & Wang, J. (2024). Considering the Joint Impact of Carbon Density Change and Land Use Change Is Crucial to Improving Ecosystem Carbon Stock Assessment in North China. Forests, 15(1). https://doi.org/10.3390/f15010055
Ruiz, F., Safanelli, J. L., Perlatti, F., Cherubin, M. R., Demattê, J. A. M., Cerri, C. E. P., … Ferreira, T. O. (2023). Constructing soils for climate-smart mining. Communications Earth and Environment, 4(1), 1–6. https://doi.org/10.1038/s43247-023-00862-x
Runyan, C. W., & Stehm, and J. (2020). Deforestation: Drivers, Implications, and Policy Responses. Oxford Research Encyclopedia of Environmental Science. https://doi.org/https://doi.org/10.1093/acrefore/9780199389414.013.669
Sim, G., Hong, S., Moon, S., Noh, S., Cho, J., Triwigati, P. T., … Park, Y. (2022). Simultaneous CO2 utilization and rare earth elements recovery by novel aqueous carbon mineralization of blast furnace slag. Journal of Environmental Chemical Engineering, 10(2), 107327. https://doi.org/10.1016/j.jece.2022.107327
Singh, B., Reddy, V. M., Reddy, K. R., Sharma, P., Nautiyal, M., Bhatnagar, S., … Alabdeli, H. (2024). Modeling the Impact of Deforestation on Global Warming using System Dynamics. E3S Web of Conferences, 581, 01023. https://doi.org/10.1051/e3sconf/202458101023
Stokreef, S., Sadri, F., Stokreef, A., & Ghahreman, A. (2022). Mineral carbonation of ultramafic tailings : A review of reaction mechanisms and kinetics , industry case studies , and modelling. Cleaner Engineering and Technology, 8(November 2021), 100491. https://doi.org/10.1016/j.clet.2022.100491
Utami, W., Sugiyanto, C., & Rahardjo, N. (2024). Estimated changes in carbon stock due to changes in land use around Yogyakarta International Airport. Journal of Degraded and Mining Lands Management, 11(3), 5727–5740. https://doi.org/10.15243/jdmlm.2024.113.5727
Wahyuni, H., & Suranto, S. (2021). Dampak Deforestasi Hutan Skala Besar terhadap Pemanasan Global di Indonesia. JIIP: Jurnal Ilmiah Ilmu Pemerintahan, 6(1), 148–162. https://doi.org/10.14710/jiip.v6i1.10083
Weiler, J., Tassinari, C. C. G., De Aquino, T. F., Bonetti, B., & Viola, V. O. (2024). Using mining waste for CO 2 sequestration: exploring opportunities through mineral carbonation, nature-based solutions, and CCUS. International Journal of Mining, Reclamation and Environment, 38(6), 425–441. https://doi.org/10.1080/17480930.2024.2318132
Wiatkowska, B., Słodczyk, J., & Stokowska, A. (2021). Spatial-Temporal Land Use and Land Cover Changes in Urban Areas Using Remote Sensing Images and GIS Analysis: The Case Study of Opole, Poland. Geosciences, 11(8), 312. https://doi.org/10.3390/geosciences11080312
Xu, Y., & Ma, L. (2024). Characteristics of overburden migration under continuous extraction and continuous backfill mining method with CO2 mineralized filling materials. Journal of Cleaner Production, 440, 140920. https://doi.org/10.1016/j.jclepro.2024.140920
Xu, Y., Ma, L., NGO, I., & Zhai, J. (2022). Continuous Extraction and Continuous Backfill Mining Method Using Carbon Dioxide Mineralized Filling Body to Preserve Shallow Water in Northwest China. Energies, 15(10), 3614. https://doi.org/10.3390/en15103614
Yang, B., Bai, Z., Cao, Y., Xie, F., Zhang, J., & Wang, Y. (2019). Dynamic Changes in Carbon Sequestration from Opencast Mining Activities and Land Reclamation in China’s Loess Plateau. Sustainability, 11(5), 1473. https://doi.org/10.3390/su11051473
Yang, Y., Chen, Y., Li, Z., & Chen, Y. (2018). Land-use/cover conversion affects soil organic-carbon stocks: A case study along the main channel of the Tarim River, China. PLOS ONE, 13(11), e0206903. https://doi.org/10.1371/journal.pone.0206903
Zaberi, N. A., & Kusin, F. M. (2018). Estimation of carbon stock changes incorporating agricultural land-use conversion scenarios for producing palm oil-derived biofuels in Malaysia. 020003. https://doi.org/10.1063/1.5075551
Zhang, N., Santos, R. M., & Šiller, L. (2020). Rapid CO 2 capture-to-mineralisation in a scalable reactor. Reaction Chemistry & Engineering, 5(3), 473–484. https://doi.org/10.1039/C9RE00446G
Zhao, Y., Wang, Y., Zhang, Z., Zhou, Y., Huang, H., & Chang, M. (2023). The Evolution of Landscape Patterns and Its Ecological Effects of Open-Pit Mining: A Case Study in the Heidaigou Mining Area, China. International Journal of Environmental Research and Public Health, 20(5), 4394. https://doi.org/10.3390/ijerph20054394
Zheng, L., Li, Y., Chen, Y., Wang, R., Yan, S., Xia, C., … Shao, J. (2023, July 13). Theory of the driving model of land use change on the evolution of carbon stock: A case study of Chongqing, China. https://doi.org/10.21203/rs.3.rs-3039177/v1
-
122
-
47
-
26
-
23
-
22
-
19
-
19
-
18
-
17
-
16

